Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.564
Filtrar
1.
J Virol ; 98(2): e0149423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294251

RESUMO

Influenza B viruses (IBV) cocirculate with influenza A viruses (IAV) and cause periodic epidemics of disease, yet antibody and cellular responses following IBV infection are less well understood. Using the ferret model for antisera generation for influenza surveillance purposes, IAV resulted in robust antibody responses following infection, whereas IBV required an additional booster dose, over 85% of the time, to generate equivalent antibody titers. In this study, we utilized primary differentiated ferret nasal epithelial cells (FNECs) which were inoculated with IAV and IBV to study differences in innate immune responses which may result in differences in adaptive immune responses in the host. FNECs were inoculated with IAV (H1N1pdm09 and H3N2 subtypes) or IBV (B/Victoria and B/Yamagata lineages) and assessed for 72 h. Cells were analyzed for gene expression by quantitative real-time PCR, and apical and basolateral supernatants were assessed for virus kinetics and interferon (IFN), respectively. Similar virus kinetics were observed with IAV and IBV in FNECs. A comparison of gene expression and protein secretion profiles demonstrated that IBV-inoculated FNEC expressed delayed type-I/II IFN responses and reduced type-III IFN secretion compared to IAV-inoculated cells. Concurrently, gene expression of Thymic Stromal Lymphopoietin (TSLP), a type-III IFN-induced gene that enhances adaptive immune responses, was significantly downregulated in IBV-inoculated FNECs. Significant differences in other proinflammatory and adaptive genes were suppressed and delayed following IBV inoculation. Following IBV infection, ex vivo cell cultures derived from the ferret upper respiratory tract exhibited reduced and delayed innate responses which may contribute to reduced antibody responses in vivo.IMPORTANCEInfluenza B viruses (IBV) represent nearly one-quarter of all human influenza cases and are responsible for significant clinical and socioeconomic impacts but do not pose the same pandemic risks as influenza A viruses (IAV) and have thus received much less attention. IBV accounts for greater severity and deaths in children, and vaccine efficacy remains low. The ferret can be readily infected with human clinical isolates and demonstrates a similar course of disease and immune responses. IBV, however, generates lower antibodies in ferrets than IAV following the challenge. To determine whether differences in initial innate responses following infection may affect the development of robust adaptive immune responses, ferret respiratory tract cells were isolated, infected with IAV/IBV, and compared. Understanding the differences in the initial innate immune responses to IAV and IBV may be important in the development of more effective vaccines and interventions to generate more robust protective immune responses.


Assuntos
Imunidade Adaptativa , Células Epiteliais , Furões , Imunidade Inata , Vírus da Influenza A , Vírus da Influenza B , Interferons , Mucosa Nasal , Animais , Criança , Humanos , Anticorpos Antivirais/análise , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Furões/imunologia , Furões/virologia , Vírus da Influenza A/classificação , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/classificação , Vírus da Influenza B/crescimento & desenvolvimento , Vírus da Influenza B/imunologia , Vacinas contra Influenza , Influenza Humana/virologia , Interferons/imunologia , Mucosa Nasal/citologia , Mucosa Nasal/imunologia , Mucosa Nasal/virologia , Linfopoietina do Estroma do Timo/genética , Linfopoietina do Estroma do Timo/imunologia , Células Cultivadas
2.
Nature ; 618(7965): 590-597, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258672

RESUMO

Rapidly evolving influenza A viruses (IAVs) and influenza B viruses (IBVs) are major causes of recurrent lower respiratory tract infections. Current influenza vaccines elicit antibodies predominantly to the highly variable head region of haemagglutinin and their effectiveness is limited by viral drift1 and suboptimal immune responses2. Here we describe a neuraminidase-targeting monoclonal antibody, FNI9, that potently inhibits the enzymatic activity of all group 1 and group 2 IAVs, as well as Victoria/2/87-like, Yamagata/16/88-like and ancestral IBVs. FNI9 broadly neutralizes seasonal IAVs and IBVs, including the immune-evading H3N2 strains bearing an N-glycan at position 245, and shows synergistic activity when combined with anti-haemagglutinin stem-directed antibodies. Structural analysis reveals that D107 in the FNI9 heavy chain complementarity-determinant region 3 mimics the interaction of the sialic acid carboxyl group with the three highly conserved arginine residues (R118, R292 and R371) of the neuraminidase catalytic site. FNI9 demonstrates potent prophylactic activity against lethal IAV and IBV infections in mice. The unprecedented breadth and potency of the FNI9 monoclonal antibody supports its development for the prevention of influenza illness by seasonal and pandemic viruses.


Assuntos
Anticorpos Antivirais , Especificidade de Anticorpos , Vírus da Influenza A , Vírus da Influenza B , Vacinas contra Influenza , Influenza Humana , Mimetismo Molecular , Neuraminidase , Animais , Humanos , Camundongos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/uso terapêutico , Especificidade de Anticorpos/imunologia , Arginina/química , Domínio Catalítico , Hemaglutininas Virais/imunologia , Vírus da Influenza A/classificação , Vírus da Influenza A/enzimologia , Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H3N2/enzimologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/classificação , Vírus da Influenza B/enzimologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Neuraminidase/antagonistas & inibidores , Neuraminidase/química , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Estações do Ano , Ácidos Siálicos/química
3.
Science ; 378(6622): 899-904, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36423275

RESUMO

Seasonal influenza vaccines offer little protection against pandemic influenza virus strains. It is difficult to create effective prepandemic vaccines because it is uncertain which influenza virus subtype will cause the next pandemic. In this work, we developed a nucleoside-modified messenger RNA (mRNA)-lipid nanoparticle vaccine encoding hemagglutinin antigens from all 20 known influenza A virus subtypes and influenza B virus lineages. This multivalent vaccine elicited high levels of cross-reactive and subtype-specific antibodies in mice and ferrets that reacted to all 20 encoded antigens. Vaccination protected mice and ferrets challenged with matched and mismatched viral strains, and this protection was at least partially dependent on antibodies. Our studies indicate that mRNA vaccines can provide protection against antigenically variable viruses by simultaneously inducing antibodies against multiple antigens.


Assuntos
Vírus da Influenza A , Vírus da Influenza B , Infecções por Orthomyxoviridae , Vacinas Combinadas , Vacinas Sintéticas , Vacinas de mRNA , Animais , Camundongos , Furões , Nucleosídeos/química , Nucleosídeos/genética , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas Combinadas/genética , Vacinas Combinadas/imunologia , Vacinas de mRNA/genética , Vacinas de mRNA/imunologia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Reações Cruzadas
5.
MMWR Morb Mortal Wkly Rep ; 71(10): 365-370, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271561

RESUMO

In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months except when contraindicated (1). Currently available influenza vaccines are designed to protect against four influenza viruses: A(H1N1)pdm09 (the 2009 pandemic virus), A(H3N2), B/Victoria lineage, and B/Yamagata lineage. Most influenza viruses detected this season have been A(H3N2) (2). With the exception of the 2020-21 season, when data were insufficient to generate an estimate, CDC has estimated the effectiveness of seasonal influenza vaccine at preventing laboratory-confirmed, mild/moderate (outpatient) medically attended acute respiratory infection (ARI) each season since 2004-05. This interim report uses data from 3,636 children and adults with ARI enrolled in the U.S. Influenza Vaccine Effectiveness Network during October 4, 2021-February 12, 2022. Overall, vaccine effectiveness (VE) against medically attended outpatient ARI associated with influenza A(H3N2) virus was 16% (95% CI = -16% to 39%), which is considered not statistically significant. This analysis indicates that influenza vaccination did not reduce the risk for outpatient medically attended illness with influenza A(H3N2) viruses that predominated so far this season. Enrollment was insufficient to generate reliable VE estimates by age group or by type of influenza vaccine product (1). CDC recommends influenza antiviral medications as an adjunct to vaccination; the potential public health benefit of antiviral medications is magnified in the context of reduced influenza VE. CDC routinely recommends that health care providers continue to administer influenza vaccine to persons aged ≥6 months as long as influenza viruses are circulating, even when VE against one virus is reduced, because vaccine can prevent serious outcomes (e.g., hospitalization, intensive care unit (ICU) admission, or death) that are associated with influenza A(H3N2) virus infection and might protect against other influenza viruses that could circulate later in the season.


Assuntos
Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Eficácia de Vacinas , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Lactente , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza B/imunologia , Pessoa de Meia-Idade , Vigilância da População , Estações do Ano , Estados Unidos/epidemiologia , Vacinação
6.
Viruses ; 13(12)2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34960689

RESUMO

H5N1 influenza virus is a threat to public health worldwide. The virus can cause severe morbidity and mortality in humans. We constructed an H5N1 influenza candidate virus vaccine from the A/chicken/Guizhou/1153/2016 strain that was recommended by the World Health Organization. In this study, we designed an H5N1 chimeric influenza A/B vaccine based on a cold-adapted (ca) influenza B virus B/Vienna/1/99 backbone. We modified the ectodomain of H5N1 hemagglutinin (HA) protein, while retaining the packaging signals of influenza B virus, and then rescued a chimeric cold-adapted H5N1 candidate influenza vaccine through a reverse genetic system. The chimeric H5N1 vaccine replicated well in eggs and the Madin-Darby Canine Kidney cells. It maintained a temperature-sensitive and cold-adapted phenotype. The H5N1 vaccine was attenuated in mice. Hemagglutination inhibition (HAI) antibodies, micro-neutralizing (MN) antibodies, and IgG antibodies were induced in immunized mice, and the mucosal IgA antibody responses were detected in their lung lavage fluids. The IFN-γ-secretion and IL-4-secretion by the mouse splenocytes were induced after stimulation with the specific H5N1 HA protein. The chimeric H5N1 candidate vaccine protected mice against lethal challenge with a wild-type highly pathogenic avian H5N1 influenza virus. The chimeric H5 candidate vaccine is thus a potentially safe, attenuated, and reassortment-incompetent vaccine with circulating A viruses.


Assuntos
Imunogenicidade da Vacina , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza , Infecções por Orthomyxoviridae/prevenção & controle , Eficácia de Vacinas , Adaptação Fisiológica , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Temperatura Baixa , Cães , Feminino , Testes de Inibição da Hemaglutinação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Celular , Imunidade nas Mucosas , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/fisiologia , Vírus da Influenza B/genética , Vírus da Influenza B/imunologia , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/imunologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Proteínas Recombinantes , Vacinas Atenuadas/imunologia , Replicação Viral
7.
Nat Commun ; 12(1): 6161, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697321

RESUMO

A panel of influenza virus-like sequences were recently documented in fish and amphibians. Of these, the Wuhan spiny eel influenza virus (WSEIV) was found to phylogenetically cluster with influenza B viruses as a sister clade. Influenza B viruses have been documented to circulate only in humans, with certain virus isolates found in harbor seals. It is therefore interesting that a similar virus was potentially found in fish. Here we characterize the putative hemagglutinin (HA) and neuraminidase (NA) surface glycoproteins of the WSEIV. Functionally, we show that the WSEIV NA-like protein has sialidase activity comparable to B/Malaysia/2506/2004 influenza B virus NA, making it a bona fide neuraminidase that is sensitive to NA inhibitors. We tested the functionality of the HA by addressing the receptor specificity, stability, preferential airway protease cleavage, and fusogenicity. We show highly specific binding to monosialic ganglioside 2 (GM2) and fusogenicity at a range of different pH conditions. In addition, we found limited antigenic conservation of the WSEIV HA and NA relative to the B/Malaysia/2506/2004 virus HA and NA. In summary, we perform a functional and antigenic characterization of the glycoproteins of WSEIV to assess if it is indeed a bona fide influenza virus potentially circulating in ray-finned fish.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Neuraminidase/metabolismo , Orthomyxoviridae/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Reações Cruzadas , Peixes/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza B/classificação , Vírus da Influenza B/genética , Vírus da Influenza B/imunologia , Vírus da Influenza B/metabolismo , Camundongos , Neuraminidase/química , Neuraminidase/genética , Neuraminidase/imunologia , Orthomyxoviridae/classificação , Orthomyxoviridae/genética , Orthomyxoviridae/imunologia , Filogenia , Receptores Virais/metabolismo
8.
Front Immunol ; 12: 746447, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603333

RESUMO

Influenza viruses undergo antigenic changes in the immuno-dominant hemagglutinin (HA) head domain, necessitating annual re-formulation of and re-vaccination with seasonal influenza virus vaccines for continuing protection. We previously synthesized mosaic HA (mHA) proteins of influenza B viruses which redirect the immune response towards the immuno-subdominant conserved epitopes of the HA via sequential immunization. As ~90% of current influenza virus vaccines are manufactured using the inactivated virus platform, we generated and sequentially vaccinated mice with inactivated influenza B viruses displaying either the homologous (same B HA backbones) or the heterologous (different B HA backbones) mosaic HAs. Both approaches induced long-lasting and cross-protective antibody responses showing strong antibody-dependent cellular cytotoxicity (ADCC) activity. We believe the B virus mHA vaccine candidates represent a major step towards a universal influenza B virus vaccine.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais/imunologia , Feminino , Vírus da Influenza B/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Vacinas de Produtos Inativados/imunologia
9.
PLoS One ; 16(8): e0256475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34460848

RESUMO

Assessing the seroprevalence of the high-risk individuals against the influenza virus is essential to evaluate the progress of vaccine implementation programs and establish influenza virus interventions. Herein, we identified the pre-existing cross-protection of the circulating seasonal influenza viruses among the older-aged population. A cross-sectional study was performed base on the 176 residual sera samples collected from older adults aged 60 to 95 years without a history of vaccination in rural Thailand in 2015. Sera antibody titers against influenza A and B viruses circulating between 2016 and 2019 were determined by hemagglutination inhibition assay. These findings indicated the low titers of pre-existing antibodies to circulating influenza subtypes and showed age-independent antibody titers among the old adults. Moderate seropositive rates (HAI ≥ 1:40) were observed in influenza A viruses (65.9%A(H3N2), 50.0% for A(H1N1) pdm09), and found comparatively lower rates in influenza B viruses (14% B/Yam2, 21% B/Yam3 and 25% B/Vic). Only 5% of individuals possessed broadly protective antibodies against both seasonal influenza A and B virus in this region. Our findings highlighted the low pre-existing antibodies to circulating influenza strains in the following season observed in older adults. The serological study will help inform policy-makers for health care planning and guide control measures concerning vaccination programs.


Assuntos
Anticorpos Antivirais/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , População Rural , Distribuição por Idade , Idoso , Idoso de 80 Anos ou mais , Anticorpos Antivirais/sangue , Estudos Transversais , Feminino , Humanos , Influenza Humana/sangue , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Prevalência , Estações do Ano , Estudos Soroepidemiológicos , Tailândia/epidemiologia
10.
Front Immunol ; 12: 664024, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276655

RESUMO

Background: Annual vaccination is the most effective prevention of influenza infection. Up to now, a series of studies have demonstrated the role of genetic variants in regulating the antibody response to influenza vaccine. However, among the Chinese population, the relationship between genetic factors and the responsiveness to influenza vaccination has not been clarified through genome-wide association study (GWAS). Method: A total of 1,968 healthy volunteers of Chinese descent were recruited and 1,582 of them were available for the subsequent two-stage analysis. In the discovery stage, according to our inclusion criteria, 123 of 1,582 subjects were selected as group 1 and received whole-genome sequencing to identify potential variants and genes. In the verification stage, 29 candidate variants identified by GWAS were selected for further validation in 481 subjects in group 2. Besides, we also analyzed nine variants from previously published reports in our study. Results: Multivariate logistic regression analysis showed that compared with the TT genotype of ZBTB46 rs2281929, the TC + CC genotype was associated with a lower risk of low responsiveness to influenza vaccination adjusted for gender and age (Group 2: P = 7.75E-05, OR = 0.466, 95%CI = 0.319-0.680; Combined group: P = 1.18E-06, OR = 0.423, 95%CI = 0.299-0.599). In the combined group, IQGAP2 rs2455230 GC + CC genotype was correlated with a lower risk of low responsiveness to influenza vaccination compared with the GG genotype (P = 8.90E-04, OR = 0.535, 95%CI = 0.370-0.774), but the difference was not statistically significant in group 2 (P = 0.008). The antibody fold rises of subjects with ZBTB46 rs2281929 TT genotype against H1N1, H3N2,and B were all significantly lower than that of subjects with TC + CC genotype (P < 0.001). Compared with IQGAP2 rs2455230 GC + CC carriers, GG carriers had lower antibody fold rises to H1N1 (P = 0.001) and B (P = 0.032). The GG genotype of rs2455230 tended to be correlated with lower antibody fold rises (P = 0.096) against H3N2, but the difference was not statistically significant. No correlation was found between nine SNPs from previously published reports and the serological response to influenza vaccine in our study. Conclusion: Our study identified two novel candidate missense variants, ZBTB46 rs2281929 and IQGAP2 rs2455230, were associated with the immune response to influenza vaccination among the Chinese population. Identifying these variants will provide more evidence for future research and improve the individualized influenza vaccination program.


Assuntos
Variação Genética , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/genética , Influenza Humana/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Criança , Pré-Escolar , China/epidemiologia , Feminino , Predisposição Genética para Doença , Genótipo , Humanos , Lactente , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Vigilância da População , Vacinação , Adulto Jovem
11.
Nat Commun ; 12(1): 4313, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34262041

RESUMO

How a history of influenza virus infections contributes to protection is not fully understood, but such protection might explain the contrasting age distributions of cases of the two lineages of influenza B, B/Victoria and B/Yamagata. Fitting a statistical model to those distributions using surveillance data from New Zealand, we found they could be explained by historical changes in lineage frequencies combined with cross-protection between strains of the same lineage. We found additional protection against B/Yamagata in people for whom it was their first influenza B infection, similar to the immune imprinting observed in influenza A. While the data were not informative about B/Victoria imprinting, B/Yamagata imprinting could explain the fewer B/Yamagata than B/Victoria cases in cohorts born in the 1990s and the bimodal age distribution of B/Yamagata cases. Longitudinal studies can test if these forms of protection inferred from historical data extend to more recent strains and other populations.


Assuntos
Vírus da Influenza B/imunologia , Influenza Humana/epidemiologia , Influenza Humana/imunologia , Distribuição por Idade , Proteção Cruzada , Humanos , Memória Imunológica , Vírus da Influenza B/classificação , Influenza Humana/virologia , Modelos Estatísticos , Nova Zelândia/epidemiologia , Probabilidade
12.
Viruses ; 13(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208979

RESUMO

Influenza B viruses (IBV) circulate annually, with young children, the elderly and immunocompromised individuals being at high risk. Yearly vaccinations are recommended to protect against seasonally influenza viruses, including IBV. Live attenuated influenza vaccines (LAIV) provide the unique opportunity for direct exposure to the antigenically variable surface glycoproteins as well as the more conserved internal components. Ideally, LAIV Master Donor Viruses (MDV) should accurately reflect seasonal influenza strains. Unfortunately, the continuous evolution of IBV have led to significant changes in conserved epitopes compared to the IBV MDV based on B/Ann Arbor/1/1966 strain. Here, we propose a recent influenza B/Brisbane/60/2008 as an efficacious MDV alternative, as its internal viral proteins more accurately reflect those of circulating IBV strains. We introduced the mutations responsible for the temperature sensitive (ts), cold adapted (ca) and attenuated (att) phenotype of B/Ann Arbor/1/1966 MDV LAIV into B/Brisbane/60/2008 to generate a new MDV LAIV. In vitro and in vivo analysis demonstrated that the mutations responsible of the ts, ca, and att phenotype of B/Ann Arbor/1/1966 MDV LAIV were able to infer the same phenotype to B/Brisbane/60/2008, demonstrating its potential as a new MDV for the development of LAIV to protect against contemporary IBV strains.


Assuntos
Adaptação Fisiológica , Vírus da Influenza B/genética , Vacinas contra Influenza/imunologia , Mutação , Vacinas Atenuadas/imunologia , Proteínas Virais/genética , Animais , Cães , Feminino , Células HEK293 , Humanos , Vírus da Influenza B/imunologia , Influenza Humana/prevenção & controle , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Genética Reversa , Temperatura , Vacinação , Proteínas Virais/imunologia , Replicação Viral
13.
Front Immunol ; 12: 715688, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34290718

RESUMO

Background: Sex differences in immune responses are well known. However, the humoral response in males and females in the case of influenza vaccination is yet to be characterized since studies have shown uneven results. Methods: A retrospective study was conducted in 2,243 individuals (46.9% males) divided by age (15-64 and ≥65 years old). A serological analysis was performed by hemagglutination inhibition assay (HI) just before and 28 days after annual vaccination against seasonal influenza viruses in people vaccinated during the 2006-2018 seasons. A comparison of the humoral responses against influenza A and B viruses contained in the vaccine, between male and female individuals in young adults and elderly was conducted. Results: Significative higher humoral response against classical influenza A (H1N1), A(H1N1)pdm09 subtype and B/Victoria lineage in terms of seroconversion rate were found in elderly women. No significant differences were found in the case of A(H3N2) subtype. Conclusions: Elderly women seem to display a greater humoral response against classical A(H1N1), pandemic A(H1N1)pmd09 and B/Victoria lineage than elderly men. Sex dimorphism does not affect young adults.


Assuntos
Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/epidemiologia , Influenza Humana/prevenção & controle , Adolescente , Adulto , Idoso , Anticorpos Antivirais/imunologia , Feminino , Testes de Inibição da Hemaglutinação , Humanos , Vírus da Influenza A/classificação , Vacinas contra Influenza/administração & dosagem , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Estudos Retrospectivos , Estações do Ano , Fatores Sexuais , Vacinação , Adulto Jovem
14.
BMC Infect Dis ; 21(1): 617, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187397

RESUMO

BACKGROUND: Seasonal influenza leads to significant morbidity and mortality. Rapid self-tests could improve access to influenza testing in community settings. We aimed to evaluate the diagnostic accuracy of a mobile app-guided influenza rapid self-test for adults with influenza like illness (ILI), and identify optimal methods for conducting accuracy studies for home-based assays for influenza and other respiratory viruses. METHODS: This cross-sectional study recruited adults who self-reported ILI online. Participants downloaded a mobile app, which guided them through two low nasal swab self-samples. Participants tested the index swab using a lateral flow assay. Test accuracy results were compared to the reference swab tested in a research laboratory for influenza A/B using a molecular assay. RESULTS: Analysis included 739 participants, 80% were 25-64 years of age, 79% female, and 73% white. Influenza positivity was 5.9% based on the laboratory reference test. Of those who started their test, 92% reported a self-test result. The sensitivity and specificity of participants' interpretation of the test result compared to the laboratory reference standard were 14% (95%CI 5-28%) and 90% (95%CI 87-92%), respectively. CONCLUSIONS: A mobile app facilitated study procedures to determine the accuracy of a home based test for influenza, however, test sensitivity was low. Recruiting individuals outside clinical settings who self-report ILI symptoms may lead to lower rates of influenza and/or less severe disease. Earlier identification of study subjects within 48 h of symptom onset through inclusion criteria and rapid shipping of tests or pre-positioning tests is needed to allow self-testing earlier in the course of illness, when viral load is higher.


Assuntos
Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Influenza Humana/diagnóstico , Aplicativos Móveis , Autoteste , Adulto , Estudos Transversais , Confiabilidade dos Dados , Ensaio de Imunoadsorção Enzimática/métodos , Estudos de Viabilidade , Feminino , Humanos , Influenza Humana/virologia , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade
15.
Front Immunol ; 12: 661379, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34108964

RESUMO

Influenza B viruses (IBV) cause respiratory disease epidemics in humans and are therefore components of seasonal influenza vaccines. Serological methods are employed to evaluate vaccine immunogenicity prior to licensure. However, classical methods to assess influenza vaccine immunogenicity such as the hemagglutination inhibition assay (HI) and the serial radial hemolysis assay (SRH), have been proven to have many limitations. As such, there is a need to develop innovative methods that can improve on these traditional assays and provide advantages such as ease of production and access, safety, reproducibility, and specificity. It has been previously demonstrated that the use of replication-defective viruses, such as lentiviral vectors pseudotyped with influenza A hemagglutinins in microneutralization assays (pMN) is a safe and sensitive alternative to study antibody responses elicited by natural influenza infection or vaccination. Consequently, we have produced Influenza B hemagglutinin-pseudotypes (IBV PV) using plasmid-directed transfection. To activate influenza B hemagglutinin, we have explored the use of proteases in increasing PV titers via their co-transfection during pseudotype virus production. When tested for their ability to transduce target cells, the influenza B pseudotypes produced exhibit tropism for different cell lines. The pseudotypes were evaluated as alternatives to live virus in microneutralization assays using reference sera standards, mouse and human sera collected during vaccine immunogenicity studies, surveillance sera from seals, and monoclonal antibodies (mAbs) against IBV. The influenza B pseudotype pMN was found to effectively detect neutralizing and cross-reactive responses in all assays and shows promise as an effective and versatile tool in influenza research.


Assuntos
Anticorpos Monoclonais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunogenicidade da Vacina/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/imunologia , Lentivirus/imunologia , Células A549 , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos/imunologia , Cães , Vetores Genéticos/genética , Vetores Genéticos/imunologia , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/classificação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza B/genética , Vírus da Influenza B/fisiologia , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Lentivirus/genética , Células Madin Darby de Rim Canino , Testes de Neutralização/métodos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Vacinação , Potência de Vacina
16.
Mol Immunol ; 135: 398-407, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022515

RESUMO

It's been almost a century since immunologists started using adjuvants as tools to develop more effective vaccines. Despite the rising number of adjuvanted vaccines in the last decades, we still lack knowledge of the adjuvants' effects on antibody response. This study was aimed to test the effect of immunizing mice with the human Inactivated Influenza vaccine (IIV), either alone or combined with different widely used adjuvants on the specific antibody response induced. Differential levels of IgM and IgG subclasses were found with the different adjuvants tested. Higher levels of antibodies did not always correspond with a higher efficacy to interfere with the virus infectivity. Differences in neutralization properties are possibly mediated by the specificity of the repertoire of antibodies induced. The repertoire was studied using a phage display 7-mer peptide library to screen for epitopes/mimotopes recognized by serum pools from vaccinated mice. The selected phage clones included peptides that corresponded to conformational mimotopes since they have no homology with lineal sequences of the Influenza strains' proteins. Five peptides were identified as recognized by sera from mice immunized with the IIV vaccine alone, including peptides from the hemagglutinin stalk domain, and by sera from mice immunized with the vaccine plus the different adjuvants employed. Adjuvants elicited a more diverse repertoire of epitope-recognizing antibodies that recognized epitopes of the HA recombinant globular head. Mimotopes were theoretically located at the neutralizing antigenic sites of the globular head of Influenza A H1N1pdm09, Influenza A H3N2, and Influenza B hemagglutinin. This study illustrates how different adjuvants can modify the extent and quality of humoral immunity against the IIV vaccine and the effectiveness of vaccination.


Assuntos
Adjuvantes Imunológicos/farmacologia , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra Influenza/imunologia , Potência de Vacina , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Biologia Computacional , Epitopos/imunologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/prevenção & controle , Biblioteca de Peptídeos , Vacinação
17.
Nat Commun ; 12(1): 2931, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006841

RESUMO

Indigenous people worldwide are at high risk of developing severe influenza disease. HLA-A*24:02 allele, highly prevalent in Indigenous populations, is associated with influenza-induced mortality, although the basis for this association is unclear. Here, we define CD8+ T-cell immune landscapes against influenza A (IAV) and B (IBV) viruses in HLA-A*24:02-expressing Indigenous and non-Indigenous individuals, human tissues, influenza-infected patients and HLA-A*24:02-transgenic mice. We identify immunodominant protective CD8+ T-cell epitopes, one towards IAV and six towards IBV, with A24/PB2550-558-specific CD8+ T cells being cross-reactive between IAV and IBV. Memory CD8+ T cells towards these specificities are present in blood (CD27+CD45RA- phenotype) and tissues (CD103+CD69+ phenotype) of healthy individuals, and effector CD27-CD45RA-PD-1+CD38+CD8+ T cells in IAV/IBV patients. Our data show influenza-specific CD8+ T-cell responses in Indigenous Australians, and advocate for T-cell-mediated vaccines that target and boost the breadth of IAV/IBV-specific CD8+ T cells to protect high-risk HLA-A*24:02-expressing Indigenous and non-Indigenous populations from severe influenza disease.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Epitopos de Linfócito T/genética , Antígeno HLA-A24/genética , Povos Indígenas/genética , Adulto , Alelos , Sequência de Aminoácidos , Animais , Austrália , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Cães , Epitopos de Linfócito T/imunologia , Feminino , Frequência do Gene , Antígeno HLA-A24/imunologia , Humanos , Vírus da Influenza A/imunologia , Vírus da Influenza A/fisiologia , Vírus da Influenza B/imunologia , Vírus da Influenza B/fisiologia , Influenza Humana/imunologia , Influenza Humana/virologia , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade
18.
PLoS One ; 16(5): e0252170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043704

RESUMO

Seasonal influenza vaccines are often ineffective because they elicit strain-specific antibody responses to mutation-prone sites on the hemagglutinin (HA) head. Vaccines that provide long-lasting immunity to conserved epitopes are needed. Recently, we reported a nanoparticle-based vaccine platform produced by solid-phase peptide synthesis (SPPS) for targeting linear and helical protein-based epitopes. Here, we illustrate its potential for building broadly protective influenza vaccines. Targeting known epitopes in the HA stem, neuraminidase (NA) active site, and M2 ectodomain (M2e) conferred 50-75% survival against 5LD50 influenza B and H1N1 challenge; combining stem and M2e antigens increased survival to 90%. Additionally, protein sequence and structural information were employed in tandem to identify alternative epitopes that stimulate greater protection; we report three novel HA and NA sites that are highly conserved in type B viruses. One new target in the HA stem stimulated 100% survival, highlighting the value of this simple epitope discovery strategy. A candidate influenza B vaccine targeting two adjacent HA stem sites led to >104-fold reduction in pulmonary viral load. These studies describe a compelling platform for building vaccines that target conserved influenza epitopes.


Assuntos
Anticorpos Antivirais/imunologia , Epitopos/imunologia , Vírus da Influenza B/imunologia , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Influenza Humana/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia
19.
Viruses ; 13(3)2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803680

RESUMO

BACKGROUND: Data suggest that pediatric patients might react differently to influenza vaccination, both in terms of immunity and side effects. We have recently shown that using a whole virion vaccine with aluminum phosphate adjuvants, reduced dose vaccines containing 6 µg of viral hemagglutinin (HA) per strain are immunogenic, and well tolerated in adult and elderly patients. Here we show the results of a multicenter clinical trial of pediatric patients, using reduced doses of a new, whole virion, aluminum phosphate adjuvanted vaccine (FluArt, Budapest, Hungary). METHODS: A total of 120 healthy volunteers were included in two age groups (3-11 years, receiving 3 µg of HA per strain, and 12-18 years, receiving 6 µg of HA per strain). We used hemagglutination inhibition testing to assess immunogenicity, based on EMA and FDA licensing criteria, including post/pre-vaccination geometric mean titer ratios, seroconversion and seropositivity rates. Safety and tolerability were assessed using CHMP guidelines. RESULTS: All subjects entered the study and were vaccinated (ITT population). All 120 subjects attended the control visit on Day 21 (PP population). All immunogenicity licensing criteria were met in both age groups for all three vaccine virus strains. No serious adverse events were detected and the vaccine was well tolerated by both age groups. DISCUSSION: Using a whole virion vaccine and aluminum phosphate adjuvants, a reduction in the amount of the viral hemmaglutinin is possible while maintaining immunogenicity, safety and tolerability in pediatric and adolescent patients.


Assuntos
Adjuvantes Imunológicos , Compostos de Alumínio , Vacinas contra Influenza , Influenza Humana/prevenção & controle , Fosfatos , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/efeitos adversos , Adolescente , Compostos de Alumínio/administração & dosagem , Compostos de Alumínio/efeitos adversos , Criança , Pré-Escolar , Feminino , Humanos , Hungria/epidemiologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/efeitos adversos , Masculino , Fosfatos/administração & dosagem , Fosfatos/efeitos adversos , Estudos Prospectivos , Vírion/imunologia
20.
J Food Sci ; 86(4): 1410-1417, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33768522

RESUMO

Immunosenescence can negatively affect cytokine production in elderly and may impair poor antibody responses to influenza vaccination and infection. Herein, the effects of Banafine® administration on influenza vaccine antibody titer in elderly patients (average age ∼80 years) receiving gastrostomy tube feeding were examined. In the double-blind, single-center, randomized clinical studies, 30 elderly bedridden patients were administered Banafine® or placebo for 8 weeks. At week 4, all patients received influenza vaccination against H1N1, H3N2, B/Yamagata, or B/Victoria. Blood biochemical indices and serum antibody titers were assessed. Banafine® administration significantly increased hemagglutination inhibition titers in response to vaccination against H1N1, H3N2, and B/Yamagata in the elderly patients (P < 0.05). Moreover, the seroconversion rate against H1N1 (47.1%) and H3N2 (29.4%) and seroprotection rate against H1N1 (71.4%) and both B strains (31.3% and 12.5%, respectively) were increased for the Banafine® group. These results suggest that Banafine® administration can increase antibody responses to influenza vaccination in bedridden hospitalized patients, and potentially modulate immune function in the elderly. PRACTICAL APPLICATION: Literature review suggested that most of the synbiotics are based on innate immunity, strain specific (probiotics), and are not consistently observed. Herein, in clinical studies we demonstrate that administration of Banafine® , a plant-based glycoconjugate, can increase antibody levels in bedridden hospitalized elderly patients following influenza vaccination.


Assuntos
Anticorpos Antivirais/sangue , Formação de Anticorpos/imunologia , Nutrição Enteral/métodos , Glicoconjugados/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Musa/imunologia , Idoso , Idoso de 80 Anos ou mais , Formação de Anticorpos/efeitos dos fármacos , Método Duplo-Cego , Feminino , Fermentação , Gastrostomia , Glicoconjugados/imunologia , Testes de Inibição da Hemaglutinação , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/imunologia , Masculino , Musa/química , Probióticos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...